WA105 ==

Developments and implementation of the WA105
6X6X6 online storage/processing on the 3x1x1 online
storage and processing small scale test farm

Elisabetta Pennacchio, IPNL

WA105 SB meeting, November 9t 2016

DUNE meeting September 2016: Online processing and storage facility of 6x6x6

Online processing and storage facility: internal bandwidth 20 GB/s, 1 PB
storage, 384 cores: key element for online analysis (removal of cosmics,

purity, gain, events filtering)

4 = 160 Gbps

— ; C.R
.3 — e 7
g'ﬁ 15 disks servers R730xd
weaon — T _ 2 metadata servers R630
) @ 1 config. server R430
% 8
—
Q
10 Gbps
C.R.

Event building :
T5810 workstations

Processing
16 lames M630
16x24 = 384 cores

Mellanox ConnectX®-3 EN

Do~ '
2P |
BESS ps e
C=5
2
B T G S ¢ Ry 1oty td L0835 g g e soosrtusittnnse 2 ManEf - h ‘
Top o Compressed data 10 Gbps)ﬁ”’x
-
- ClyOSIill 4
.o G 6 = 60 Gbps 6+1 = 70 Gbps max
= Q.
° %
w o
TR
L
O
PC:
WR slave
£
ul Raw data : ight
i LA

Smaller scale test system
implemented for the

operation of the 3x1x1

C.R. stands for Counting Room

Online storage/processing farm motivation

SPSC report, April 2016

The local bandwidth of 20 GB/s also allows comfortable concurrent reading and writing access to

the compressed data on the loeal storage svstem for online analvsis. Data transfer to the I'T division

should happen by clustering the events in files having dimensions of a few gigabytes.]| This file size

is needed for an efficient storage on the Castor system at the computing center. The online storage
facility has also the task of buffering the events and formatting them for transfer on this typical file

size.

In addition to the storage bullers requirement described above, the online storage processing farm

allows for the following functionalities:

¢ Completion of event building by connecting the data flows of the two back-end systems

e Fast event reconstruction and disentangling of cosmic rays tracks segments by using also the

LRO timing information

e Selection of a subsample of the cosmic ray tracks overlapped to heam events for online purity

analysis and detector gain monitoring

e General online data quality checks

e Events filtering and formatting for final storage

A small scale subsystem of the online data storage and analysis facility will also be implemented

on the LAr-Proto data taking since September 2016, in collaboration with the CERN IT division.

The online processing system installed on the LAr-Proto will allow performing software tests on

he online data processing and optimizing the final configuration for the DLAr system. The LAr-

A description of the hardware configuration of the farm has been provided during the 3x1x1
biweekly meeting of September 22
https://indico.fnal.gov/conferenceDisplay.py?confld=12944

The EOS system was selected months ago for the data storage system thanks to the extensive
performance tests made by Denis Pugnere in order to grant high bandwidth concurrent
write/read access (see TB slides) and it has been implemented also in the 3x1x1 smaller farm.

EOS is a network distributed file system using a meta-data server
(https://indico.fnal.gov/conferenceDisplay.py?confld=12347)

—> This presentation aims to show how the tasks of the online processing are
implemented in the smaller scale farm available now and how this processing is
organized for the 3x1x1

https://indico.fnal.gov/conferenceDisplay.py?confId=12944
https://indico.fnal.gov/conferenceDisplay.py?confId=12944
https://indico.fnal.gov/conferenceDisplay.py?confId=12347
https://indico.fnal.gov/conferenceDisplay.py?confId=12347
https://indico.fnal.gov/conferenceDisplay.py?confId=12347

DAQ racks installation

I I | 10 Gb CERN Network for computing center (EOS, etc..) ||
Farm DAQ Proximity DAQ

' — 11 7

| 11

i Fiber connection : 1 i

| - 30 m length distance in between the farmlmclthe proximity rack

| Q - 2x10Gb rate : link aggregation in betwedn ﬂoptical switches

|

|

|

Farm rack composed by :

- 4 cpumodules with 4 units

- 4 storage servers : total space 192TB

- 1 switch HP Procurve 6600 24xg > 2 x 10 Gb
- 1 switch HP Procurve 6600 48g 4 xg

| - 1UPSAPC 6kW
: ; Only 10 cpu units available Storage server name :
wal05ssxx: - xx unit id
| Cpu unit name : - Units available :
I wa105cpuxxyy : - Xx cupunit id - wal05ss00,
1 - yy module of xx - wal05ss01
i - Units available : - wal05ss02
1 - wal05cpu0000 - wal05ss03
- walO5cpu0001 - wal05ss04
1 - walO5cpu0003
¢ - wal05cpu0100
- walO5cpu0102
- walO5cpu0103
- wal05cpu0201
- wal05cpu0202
- wal05cpu0203
- wal05cpu0300

farm rack

https://indico.fnal.gov/conferenceDisplay.py?confld=12944

Proximity rack composed by :
- eventbuilder composed by a storage servers (48 TB)
- 1 switch HP Procurve 6600 24xg > 2x10Gb
- White rabbit unity

- Cosmics counters crate/computer

- 4 x microTCA crate linked by fiber channel
- 1UPS2kw

X4

https://indico.fnal.gov/conferenceDisplay.py?confId=12944

Data flow

Binary files are written by the DAQ in the storage server of the proximity rack:
each file is composed by 335 events - 1GB/file (optimal file size for storage systems) not
compressed

each run can be composed by several files (this number is not fixed):

runl-seqO.dat
runl-seql.dat
run2-seq0.dat |
run2-seql.dat
runz-seq2.dat p=

run2-seqg3.dat
run2-seq4.dag_

The automatic online data processing includes these 3 steps (not in strict time order):

1) As soon as a data file is produced, it is copied to the EOS storage area of the farm,
a script to run reconstruction is automatically generated and submitted to the batch system

2) Results from reconstruction (root files) are also stored in the storage area and analyzed to
evaluate purity and gain, to monitor the behavior of the detector in time (online analysis)

3) The binary data files are also copied to the central CERN EOS, where they are available to the
users for offline analysis

Note: Beyond the processing of the 3x1x1, which produces a very small data flow, the entire farm
system is fundamental in “mock data challenges” and various tests in order to study and optimize
the design of the final high rate system for the 6x6x6 6

Preliminary remarks

Before discussing how these steps have been implemented, it is useful to recall some main
characteristics of the system (see also picture in slide 5):

Event builder machine storage space: 48 TB

Online storage/processing farm storage size: 192 TB

Filesystem of the online storage system: EOS

Protocol to copy data from Event Builder to the online storage system : xrootd

Resources manager for the batch system: TORQUE

7 cpu units > 112 processors, possibility of having up to 112 jobs running simultaneously
(job sequential monocore)

- Reconstruction software installed

WA105Soft (revision 377) and related libraries (root 5.34.23 xrootd 4.0.4, same versions
installed at CCIN2P3 and on Ixplus)

The farm is foreseen for fast reconstruction of the raw data and purity and gain online
measurement - only the code related to reconstruction has been installed (the code needed
for generation of Monte Carlo events is not available)

To validate this installation some Monte Carlo events (produced at CCIN2P3) have been
processed (reconstruction+benchmark) on the farm and on the CCIN2P3 computer center,

producing identical results

-> Accounts on the online farm:

= shift - used by people on shift, to run the daq, the event display and monitor results

= prod - to maintain the automatic data processing machinery: scripts for file transfers, batch
processing, copy to EOS

= evtbd - dag account for the event builder software maintenance

No personal account are foreseen on the farm
The account working environment is already finalized for the prod account
The configuration of the shift account is under study

- To setup and test the data processing, 2 emulated data binary files produced by Slavic in
the DAQ simulation tests in Lyon have been used

File 1. 335 events, compressed 37MB
File 2 335 events, not compressed 1GB

— The configuration of the storage system is under finalization (local EOS installation) :
Standard UNIX commands to access, move, copy files are not the ones used under EOS

A temporary version of the processing/storage machinery scripts was developed and tested while
EOS was not yet operational - all these scripts used on the farm to organize the data processing
will have to be now to be re-adapted in the part of data access to be EOS compliant.

These changes, will have to be carefully tested, and will requires some times : It will not only be
matter of modifying a couple of lines of code. In the following slides the red star will show

where changes are still needed o

Directories in the production account
2 main directories:

[prodiwaldScpul00n ~] §
[pr wallSepuloon all_
total

all_logs: .
automatic peTare. D opmenmaln?
. <F-x. 49 prod wallds
processing prodive
|OgS/ i - . i wallS—Ccomp 263 . & = rans E3T Ccomp.log
bOOkkeep|ng s _ i :.:_ 2 prod walOos J .

1 prod walls

cpuadaoo

runl

409 . runs

409 . : runi

prod ! T C 3 rund

-
&
-
=
&

[prodd wal05cpud00n all_luﬂﬂ]$ cd .S proce:
[prodiwsl05cpull00 processingl § ls -rtl
total 12

prod wallS-comp 4096

prod walldS-comp 4096

prod walos

prod walos

Now we will go through the 3 points of slide 6:

1)

2)

3)

As soon as a data file is produced, it is copied to the EOS storage area of
the farm, a script to run reconstruction is automatically generated and
submitted to the batch system

Results from reconstruction (root files) are also stored in the storage area
and analyzed to evaluate purity and gain, to monitor the behavior of the
detector in time (online analysis)

The binary raw data files are also copied to the central CERN EQOS, where
they are available to the users for offline analysis

Data Processing (point 1)

1) As soon as a new data file is produced, it is copied to the EOS storage area of the
farm, a script to run reconstruction is automatically generated and submitted to the
batch system

A binary file become available on the storage area of the online machine:
ex runl-seql.dat

runl014-seq?2.dat

The detection of the completion of this new file is based on inotify

Inotify is a Linux kernel feature that monitors file systems and immediately alerts an attentive
application to relevant events, in our case a “write and close” event (file opened for writing was
closed).

It is used within a bash script, running in background.

This mechanism avoids to scan the storage area every n seconds to look for new files.

As soon as Inotify detects the file, 3 actions are triggered:

1) the file is copied in the storage area of the farm *

There is one directory for each run—-> if a new run starts, a new directory is created.
The file is copied in its final destination

11

2) One entry is written in the /todo directory todo/run1014-seq2.dat

3) The log file to record all the transfers all_logs/fromEVB/alltransfer.log is updated by
appending the following line:

0 2016-10-27 13:55:04 2016-10-27 13:55:04 1023M 2016-10-27 13:55 /home/prod/storage/input/run1014/run1014-seq2.dat

Time duration of the copy from online machine to storage area *
Time when the copy ended

Time when the copy started

Time when the file was written by the daq

- A single log file is continuously updated during the data taking

These informations are critical, so some redundancy has been foreseen ->the same line is also
written in the file /all_logs/fromEVB/runs/run1014.log = one log file for each run

more ../all_logs/fromEVB/runs/run1014.log

0 2016-10-27 13:54:49 2016-10-27 13:54:49 1023M 2016-10-27 13:54 /home/prod/storage/input/run1014/run1014-seql.dat
0 2016-10-27 13:55:04 2016-10-27 13:55:04 1023M 2016-10-27 13:55 /home/prod/storage/input/run1014/run1014-seq2.dat
0 2016-10-27 13:55:18 2016-10-27 13:55:18 1023M 2016-10-27 13:55 /home/prod/storage/input/run1014/run1014-seq3.dat
0 2016-10-27 13:55:33 2016-10-27 13:55:33 1023M 2016-10-27 13:55 /home/prod/storage/input/run1014/run1014-seq4.dat
0 2016-10-27 13:55:47 2016-10-27 13:55:47 1023M 2016-10-27 13:55 /home/prod/storage/input/run1014/run1014-seqg5.dat
0 2016-10-27 13:56:02 2016-10-27 13:56:02 1023M 2016-10-27 13:56 /home/prod/storage/input/run1014/run1014-seq6.dat
0 2016-10-27 13:56:17 2016-10-27 13:56:17 1023M 2016-10-27 13:56 /home/prod/storage/input/run1014/run1014-seq7.dat
0 2016-10-27 13:56:31 2016-10-27 13:56:31 1023M 2016-10-27 13:56 /home/prod/storage/input/run1014/run1014-seq8.dat
0 2016-10-27 13:56:46 2016-10-27 13:56:46 1023M 2016-10-27 13:56 /home/prod/storage/input/run1014/run1014-seq9.dat
02016-10-27 13:57:01 2016-10-27 13:57:01 1023M 2016-10-27 13:56 /home/prod/storage/input/run1014/run1014-seql0.dat

12

To be done:

These log files have to be regularly copied in a public area at CERN to be accessible
by everyone.

They contain relevant information on runs data flow: number of sequences, time at which
each data sequence was copied on local EOS

These info are also needed to make some performances studies on the system and to monitor
the smoothness of the data flow

The most natural way to treat these files is to put them in a database - to be designed

Scheme corresponding to

<m_> point 1 in data processing:

run1014-seq2.dat —> triggering of data file
transfer and processing

N— -~

*

N Prod automatic machinery
~——_ g
N
run1014-seq2.dat alltransfer.log and run1014.log are updated
_—/ y A new entry is added in /todo to trigger processing
%o/runl-se%.dat

N/

The file has to be processed as soon as it becomes available on eos |:> 14

In order to handle the processing the manager script processing.sh is periodically executed from the
crontab: it reads entries to be processed from /todo dir, it creates a processing script for each file
and submits it to the batch system where the load is automatically balanced among workers*

[prodiwallscpuldld processing] §
cotal 12

~—xr-¥. 152 prod walldS-comp yov 4 16:40 scripts

[—XL-X.
C—AL-X.

T—XE-X.

prod wallS-comp Jov 4 16:40 toanaly
prod wallS-comp Jov 4 16:42 work

prod wall5-comp 5 Nov 4 16:42

r — — - - - - - -

O T o T o

1 prod wallS-comp oot 20

1 prod wallS-comp oct 21

1 prod wallS—comp oot 24 147 epilogue.script
1l prod waldS-comp oot 24 185:34 run reco.sh

= All the generated processing scripts are also archived in processing/scripts/runiD/...
= The batch processing logs are saved in all _logs/batch/runlD/...

In the following slides all these steps are shown in details >

[prodiiwalldS=z=20494 monitor] § mor

nohup: ignoring input

Detting up watches.
Watches established.

[prodiiwall5==204 monitor]

e inotifvy. 1l

=1

do o fwork/WA105 box3ll LT 10 comp vil.dat runl-segl.dat

""" processing] § od
cd input/
input]$ ls -rtl

wallS—comp &
0000 input] $ cd run
ul000 runl]$ l=s -rtl
1 prod walOS-comp 17
1 prod wallb-co

cpul000 runl] d

3 e/ input/runl
0Scpull0l runl]$ I

The file is copied to the storage
(the run directory is also created)

runl-segl.dat
~unl. log

e
_____ . 37M Z016-10-25 15:47 home/prod

e/ input/runl/runl-=eq0.dat

The file transfer action is recorded in the log files:

prodiiwaldScpull00 storage] § ../all logs/

8
prodiiwaldScpuld0ll all logs)
atch fromEVWE toEQ3 B
prodiiwalisScpudl0d 11 logs] § cod fromEVES
prodidwalldSocpuloon frDEEHE]E 1=
lltransfer.log runs

g
._'Il

prodidwaldScpuld0l fromEVE] § more alltransafer. log

[prodiwallse

2016-10-25 15:47:03 runl-gegl.dat 37M 2016-10-25 15:47 Showe/prod/storage input/runl/runl-seql. dat

[prodiwallsc

ingl ¥ pud And a line is added in todo directory

lz -rtl todo

m-r—--r—--. 1 prod wallS-comp O oot 2 5148 runl-=eqgl
‘prodEwaldscpull0d proc ingl § I

[prodiwaldScpull0l work] § L /proc sing.sh
file

runl runl-seqgl.dat runl-seg0

AL WAL T AL T A <

[prD| ﬂquupuUUUU

The job is named
reco_filename

[prodiwaldScpull0l processing] & ls -rtl todo
total O

[prodivaldScpuldlll processing] § I

Batch results

U=er

prod 00:05:10 C prod

runl]§ l=z -rtl
1 - [=3 = ' " as : *

walls—comp

job
job

walltime

Job ID

Uzer ID

Group ID . wallS-comp

ame I 1 runl-segd
51
mput 110, mem=1058576kh, vinem=34=2436kbh, walltime=00:05:14

prod

These info can be combined in the global data flow logging to the ones related to the
transfer of the data files to the farm storage/ CERN EOS

Treatment of job failure:

» At the moment there is no automatic resubmission in case of job failure.
» The failure is notified by sending a mail to prod
» |tis reasonable to start like this, and learn during the data taking which is the amount of

jobs for which the reconstruction fails and understand for which reasons in order to tune a
recovery procedure

» From this first experience we can decide if and in which cases automatic resubmission is
needed

Tests of the system

= To validate this setting-up, some tests have been performed.

= The goal was to test the synchronization mechanism between the online machine and the
production farm, the automatic processing of the binary files and the batch system
performances *

= These tests will have to be repeated once the local EOS configuration will be finished

Test #1 :
A binary file (compressed) is produced every 300 seconds (corresponding event trigger
rate~1Hz) by the online machine,
Total number of files generated and processed during the test: 50
The test lasted ~ 4hours and 10 min
15t job submitted on : 2016-10-26 26 11:01:00
Last job ended on : 2016-10-26 26 15:11:11
Test #2 .
A binary file (not compressed) is produced every 300 seconds by the online,
Total number of files generated and processed during the test: 25
The test lasted ~ 2 hours and 5 min
15t job submitted on : 2016-10-28 09:21:22
Last job ended on : 2016-10-28 11:25:42
Note: data compression is an aspect which has been implemented in the DAQ and it is
under test in view of the 6x6x6 where it will be essential but it is not needed in the 3x1x1
data flow
- No problems during jobs processing: as soon as one raw data file is produced by the online is
“immediately” treated the queues for batch processing are not saturated at all,
A job submitted to the batch system is immediately processed 2

To further validate the system, two different tests have been performed:

Test #3: A binary file (compressed) is produced every 10 seconds (event trigger rate~30Hz) by
the online,

Total number of files generated and processed during the test: 500

The test lasted ~ 1lhours and 30 min

15t job submitted on : 2016-11-04 12:45:19
last job ended on: 2016-11-04 14:19:58

Test #4: A binary file (not compressed) is produced every 10 seconds (event trigger rate~30Hz)
by the online,

Total number of files generated and processed during the test: 500

The test lasted ~ 2hours and 5 min

15t job submitted on: 2016-11-04 14:39:44
last job ended on: 2016-11-04 16:45:13

- In both cases the batch processing ended smoothly, and once a job is submitted to the batch
system is immediately processed

The time duration of the two test is different: this is due to how the files were “generated” on the
online machine, this is related neither to the synchronization mechanisms between online machine
and processing farm, nor to the batch system

(these fake DAQ files are generated by multiple copies from the same data file, this process is
more efficient with small files (compressed data file) than with the standard 1 GB files 22

In the different tests, all the jobs ended correctly.

All the available workers have executed at least one job: results have been checked also
with Denis, who installed and configured the batch system. This has allowed to find and fix
some (minor) issues in the batch system configuration.

Some numbers:
RAM memory needed by each job ~ 330MB

Time elapsed between the start and the end of the execution (335 events/file)
compressed data input file: ~ 9 minutes
not compressed data input file: ~ 4 minutes

With Denis we have decided that the input file to be processed is not copied to the $TMPDIR
of the worker, and the output file is also directly written in the storage area - this avoids file
transfers, the network bandwidth and reduces metadata handling

These tests have been done more than once to check in time the stability of the system,
and in general they were repeated every time a modification in the configuration of the online
processing/storage system was introduced

All the root files have been systematically opened for reading and the number of entries
checked

The execution logs contain time information on the processing of the files—> these can
be merged with the ones related to file transfer, to build the complete "story” of the file

Purity and gain analysis (point 2)

2)

Results from reconstruction (root files) are also stored in the storage area and
analyzed to evaluate purity and gain, to monitor the behavior of the detector in time
(online analysis)

The purity and gain analysis is performed starting for root file obtained from data
processing (the principle and the tools have been presented extensively at the past SB
meetings)

Several root files (3 or 4) have to be combined in order to gather sufficient statistics to
produce significant results *

The scripts needed to execute the analysis in an automatic way are under development,
but what is important is that all the required software is available : it has been presented
and explained during the Science Board meeting of July 6th and it is also available on the
svn https://indico.fnal.gov/conferenceDisplay.py?confld=12481

The gain analysis requires as input the results obtained from purity measurement (these
results are written in an ascii file) Slavic has modified the code for gain measurement to
read this external file

Results for purity and gain can be used during the shifts to monitor the detector behavior:

Slavic is developing the code to monitor them 24

https://indico.fnal.gov/conferenceDisplay.py?confId=12481
https://indico.fnal.gov/conferenceDisplay.py?confId=12481

LEM gain

The method was presented at SB July/06

[svn] / WAL105Soft / src / oanacrpgain.cc

View of /WA10SSoft/src/oanacrpgain.cc

* The program segments CRP into 50x50 cm2 areas

« The dQ/ds from tracks crossing each area are stored

« The mean/ (or truncated mean) is calculated after a given number of events is
processed

Inputs:
1. File with reconstructed 2D tracks
2. File with summary of the purity analysis: need to correct the charge attenuation

Output:

1. If selected, can append to the purity analysis file
2. Optionally can produce ROQOT file with 2D histogram of the segmented area

SG

25

https://indico.fnal.gov/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=12481

Example summary file

Time stamp: DDMMYY_HHMMSS

196516 195200 / Electron lifetime (from view 0, view 1) in us and
100000.0 0 100088.8 @ “ fit errors. (some dummy values here for inf)

1 8.80805 0.137308 8.70709 0.12776
.75818 ©.117562 8.69889 0.115995
70023 0.130629 8.72318 ©.125939
.75358 0.13312 8.61803 0.121344
.7278 0.125962 8.68514 0.127065
J7172 0.140858 8.65016 0.134205
.75325 0.132808 8.71416 0.125767
.80954 0.154649 8.70283 0.13836

<dQ/ds> in fC/cm obtained in
each 50x50 cm2 from both

D 00 =] O LA s L) P
mmmmmmmm

.72229 0.132936 8.6702 0.127554 VIEWS |
10 §.72498 0.134056 8.65304 0.13072 But LEM numbering needs to
11 8.60442 0.12831 8.58908 ©.129938 be adapted to the 3x1x1
12 8.73773 0.133048 8.73078 0.134379 convention

—/

SG

26

Optional ROOT output file

b 18 ~
17.8 E
. . 100 176 O
2D histo showing sum of 174
. 50 :
<dQ/ds> from two views 172 2
0 17 O
KEY: TH2F crp3x1x1 crpmap;1 — 16.8 '§
KEY: THI1F crp3xlxl view® bin@;1l -50 16.6 E
KEY: THIF crp3xlxl viewl bing;1 ’
KEY: TH1F crp3x1x1 view® binl;1l ~100 16.4
KEY: TH1F crp3x1x1 viewl binl;1 16.2
KEY: TH1F crp3x1x1 viewd binz;1 _150 16
KEY: THI1F crp3x1x1l viewl binz:1 =50
KEY: TH1F crp3x1x1 viewd bin3;1)(
KEY: TH1F crp3x1x1 viewl bin3;1
KEY: TH1F crp3x1x1 viewd bin4;1
KEY: TH1F crp3x1x1 viewl bin4;1
KEY: TH1F crp3x1x1 viewd bin5;1
KEY: THIF crﬁgml viewl bins:1 >dQlds distribution in each spatlal bin
KEY: TH1F crp3x1x1 viewd bin;1l .
KEY: THIF crp3x1x1_viewl bin6;1 900F " A
KEY: THIF crp3x1x1 viewd bin7;1 800 E
KEY: THIF crp3x1x1 viewl bin7;1 700E =
KEY: THI1F crp3xlxl view® bing;1 600 3
KEY: TH1F crp3x1x1 viewl bing;1l soob- E
KEY: THIF crp3x1x1 viewd bing;l o 3
KEY: THIF crp3x1x1 viewl bing;1l 400 E
KEY: THIF crp3xlxl viewd binle;1l 300E E
KEY: TH1F crp3x1x1 viewl bin1e;1 200E- =
KEY: THIF crp3x1xl viewd binll;l 100E- 1“*»vwh~_ 3
KEY: THIF crp3xlxl viewl binll:l _ N 186G
0 10 20 30 40 50 60

View 1 dQ/ds (fC/mm)

Note on the LEM numbering

. v
3§ I~~,—;._ =]u """"""" rI 1: 3 u o gor m-mt b ReciEe J| 1 e
&%‘) J!n W 0 [0 s O 5 10 o)

1 a8 [0o 0fo 1 - i

i ‘n 4 (i 5 00 oo 10 J
! ol 0 1§ uifo 113 J
GFT © e J Lo - -] uuuuuuuu | v o | o - |- -
I e .:" Ll I T emomemm, A e I ey = “ ﬁﬁﬁﬁﬁ A
t 2l o th 0,0 0o)9 i
0 2l e C ?il 00 R 0o 12]
" 3 2 (o 4 i 7 6 0 ode)2 1
Ta N 00 00 L 11 12)

ocsffW Al i [um oot) 1 f\ i
- L5 & a= - . b---- ----- 1’ - - e -

AW/ YBo

amdgotation

The convection for the LEM numbering is rather awkward
In the future it would be much better to continuously increment
LEM number along x /y with wrap around to the next row /

column (like binning in 2D histogram)
SG

28

GUI version 0

5

Data Quality Monitor

{3 Monitaring Tasks
Ela Purity

----- N CRAnaPurity

Iél--a CRFP

----- |l'| FPedestalMean
(1] PedestalRit3

~— Monitoring tasks from online

processing outputs

SG

29

LEM gain monitoring

i Data Quality Monitor - 0O x

{23 Monitaring Tasks
(-3 Purity

----- [CR&maPurity

é.?c[lﬁlppmm CRAnaGain_LEM1to12 |—=-tem oTLEM2

: —=— LEM3 —=— LEM4
(31 PedestaliMS

CRAnaGain_LEM1tol2
File Edit Yiew Options Tools

Help

I CRAnaGain_LEMIto12 E B —5— LEMS —=— LEM6
(] CRAraGAssym_LEM1ta12 o — —&— LEM7 —s LEMB8
2 B —— LEM9 —e— LEM10
2 24 B —s— LEM11 —s— LEMi2
g L
©

5 These are some fake values

- (just to test the program)
|15:40‘ — I17:03I — ‘18:26| — I19:50I — I21:13I

SG

Charge asymmetry between

-y

VIeWsS

Wi Data Quality Monitor - O x
! = CRAnaQAsym_LEM1tol2 - 0O x
23 Moritoring Tasks File Edit ¥iew Options Tools Help
Ea Purity
~ [ICRansPurity C RAnaQAsym_L EM1 t01 2
E"?_.EPPEE,MMW CRAnaQAsym LEM1to12
- @rekoisrns Entries 131
(1] CRAnaGain_LEM1ta12 B
4y CRAnatAsym_LEM tal2 Mean 0.001304

RMS 0.05056

-0.1 0 3

0.1 0.2 0. 04 0.5
(dQ /ds - dQ/ds) / (dQ /ds + dQ/ds)

SG

Adding more monitoring tasks

Here it is shown how new distributions can be included in the display:

1815
4096
4096
4096
1483
1096
4096
4096
4096
4096

Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct

13
13
13
21
24
23
23
25
25
25

16:
16:
16:
18:
17:
17:
17:
17:
17:
17:

44
46
46
55
01
03
03
07
08
08

Makefile
Qscan

benchmark

guiutils
Makefile
include
montasks
5rc

lib

bin

.inc Add code for a

specific task here

A given task should be derived from MonTask

object

Need to implement:

« The names of different items to appear in the
tree

« Afunction on how to read a given file with
results

* A function on how to draw the data

SG

32

Adding more monitoring task

* Add the new task to the gui “src/dgmon.cc”

int main {int argc, char sxargy)

:

L 7 - 1] "
TApplication thefpp "Muyfpp", &arec,argy);

DAMony iewer guiigClient->GetRoot (), SO0, 5007
> This are the tasks shown so far
gul, AddTaskToTres(&crana_purity s
MonCRPCHPer! crpch_peds; The polling time sets the frequency
" o with which the data summary directory
is checked for new results (here 5 sec
were used for testing and should be
_ more reasonable in reality)

} SG

33

Transfer of raw data files to central EOS (point 3)

3) The binary raw data files are also copied to the central CERN EOS, where they are

available to the users for offline analysis

As discussed with IT people, data transfer to the central EOS (and CASTOR) should happen
by clustering the events in files having dimensions of a few gigabytes: ideally 5GB, as it will be
done for the 6x6x6, for the 3x1x1 we kept to the minimum of 1 GB allowed by the system for a
decent performance

- The standard data size for the 3x1x1 will be 1 GB with copies also to the central CERN EOS,

some tests at 5 GB could be useful for performance studies in view of the 6x6x6 :

In order to assemble the data in larger files for final archiving on the central EOS the safer and
easiest approach is to build a tar archive. BUT:

The run duration is not fixed, and especially in the first period of the data taking, we can
imagine to have short runs (with few events), corresponding to different running conditions.
So, to build an archive of 5 GB we would have to group several runs. At least in the first part of
the data taking it would be better to build the archives by hands, in order to group together
runs corresponding to the same type of measurement (eg, runs corresponding to an HV scan)
Of course a log file has to be provided with every archive

Scripts to move files between different EOS instance have already been prepared, but of
course will have to be modified to run on the farm, to check the transfer rate and optimize the
options chosen for the transfer

This part is not in top priority it will be tested calmly when the situation is stable in order to prepare
for the 6x6x6 34

Conclusions

The processing of raw data on the online farm has been setup: the needed software is
available and the batch system has been carefully tested and benchmarked

The software needed to perform online analysis (purity+gain) is available, the
scripts to automatize its execution are in progress.
Slavic is working at the monitoring of these results

For each step in the processing log files are written, with the final goal to store them in a
database. This is not urgent, but it is something that has to be foreseen and tested in view
of the 6x6x6 operation

Beyond the monitoring of the 3x1x1 all this work is mostly useful in order to test and
prepare for the 6x6x6 and optimize the design of the final farm

TO DO:

Once EOS is available, all parts of the machinery concerning data access will have to be
modified and all tests will be redone and the data storage/network will be benchmarked
Some work to automatize the execution of the online analysis for purity/gain has to be
completed

The version of the WA105Soft used is not the final one: for sure some changes will be
needed once the DAQ program will be in its final version. Once we are confident that the
software version is the final one, a new data reconstruction gscan release can be tagged,
defined as the “official one” and used for the online and offline processing

